概念
编译器会根据该对象是否被函数外部引用来决定是否逃逸:
- 如果函数外部没有引用,则优先放到栈中;
- 如果函数外部存在引用,则必定放到堆中;
ps: 注意,对于函数外部没有引用的对象,也有可能放到堆中,比如内存过大超过栈的存储能力。
函数中申请一个新的对象
- 如果分配在栈中,则函数执行结束可自动将内存回收;
- 如果分配在堆中,则函数执行结束可交给GC(垃圾回收)处理;
先上总结
- 栈上分配内存比在堆中分配内存有更高的效率
- 栈上分配的内存不需要GC处理
- 堆上分配的内存使用完毕会交给GC处理
- 逃逸分析目的是决定内分配地址是栈还是堆
- 逃逸分析在编译阶段完成
函数传递指针真的比传值效率高吗?
我们知道传递指针可以减少底层值的拷贝,可以提高效率,但是如果拷贝的数据量小,由于指针传递会产生逃逸,可能会使用堆,也可能会增加GC的负担,所以传递指针不一定是高效的。
场景,贴代码
通过编译参数-gcflag=-m可以查看编译过程中的逃逸分析:
指针逃逸
package main
type Student struct {
Name string
Age int
}
func StudentRegister(name string, age int) *Student {
s := new(Student) //局部变量s逃逸到堆
s.Name = name
s.Age = age
return s
}
func main() {
StudentRegister("Jim", 18)
}
函数StudentRegister()内部s为局部变量,其值通过函数返回值返回,s本身为一指针,其指向的内存地址不会是栈而是堆
栈空间不足逃逸
package main
func Slice() {
s := make([]int, 10000, 10000)
for index, _ := range s {
s[index] = index
}
}
func main() {
Slice()
}
当栈空间不足以存放当前对象时或无法判断当前切片长度时会将对象分配到堆中。
动态类型逃逸
很多函数参数为interface类型,比如fmt.Println(a …interface{}),编译期间很难确定其参数的具体类型,也会产生逃逸。
package main
import "fmt"
func main() {
s := "Escape"
fmt.Println(s)
}
闭包引用对象逃逸
package main
import "fmt"
func Fibonacci() func() int {
a, b := 0, 1
return func() int {
a, b = b, a+b
return a
}
}
func main() {
f := Fibonacci()
for i := 0; i < 10; i++ {
fmt.Printf("Fibonacci: %d\n", f())
}
}
Fibonacci()函数中原本属于局部变量的a和b由于闭包的引用,不得不将二者放到堆上,以致产生逃逸